3.789 \(\int \frac{x^3 \sqrt{c+d x^4}}{a+b x^4} \, dx\)

Optimal. Leaf size=70 \[ \frac{\sqrt{c+d x^4}}{2 b}-\frac{\sqrt{b c-a d} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^4}}{\sqrt{b c-a d}}\right )}{2 b^{3/2}} \]

[Out]

Sqrt[c + d*x^4]/(2*b) - (Sqrt[b*c - a*d]*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^4])/Sqrt[b*c - a*d]])/(2*b^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0610729, antiderivative size = 70, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {444, 50, 63, 208} \[ \frac{\sqrt{c+d x^4}}{2 b}-\frac{\sqrt{b c-a d} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^4}}{\sqrt{b c-a d}}\right )}{2 b^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(x^3*Sqrt[c + d*x^4])/(a + b*x^4),x]

[Out]

Sqrt[c + d*x^4]/(2*b) - (Sqrt[b*c - a*d]*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^4])/Sqrt[b*c - a*d]])/(2*b^(3/2))

Rule 444

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^3 \sqrt{c+d x^4}}{a+b x^4} \, dx &=\frac{1}{4} \operatorname{Subst}\left (\int \frac{\sqrt{c+d x}}{a+b x} \, dx,x,x^4\right )\\ &=\frac{\sqrt{c+d x^4}}{2 b}+\frac{(b c-a d) \operatorname{Subst}\left (\int \frac{1}{(a+b x) \sqrt{c+d x}} \, dx,x,x^4\right )}{4 b}\\ &=\frac{\sqrt{c+d x^4}}{2 b}+\frac{(b c-a d) \operatorname{Subst}\left (\int \frac{1}{a-\frac{b c}{d}+\frac{b x^2}{d}} \, dx,x,\sqrt{c+d x^4}\right )}{2 b d}\\ &=\frac{\sqrt{c+d x^4}}{2 b}-\frac{\sqrt{b c-a d} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^4}}{\sqrt{b c-a d}}\right )}{2 b^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.0315341, size = 69, normalized size = 0.99 \[ \frac{1}{2} \left (\frac{\sqrt{c+d x^4}}{b}-\frac{\sqrt{b c-a d} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^4}}{\sqrt{b c-a d}}\right )}{b^{3/2}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(x^3*Sqrt[c + d*x^4])/(a + b*x^4),x]

[Out]

(Sqrt[c + d*x^4]/b - (Sqrt[b*c - a*d]*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^4])/Sqrt[b*c - a*d]])/b^(3/2))/2

________________________________________________________________________________________

Maple [B]  time = 0.006, size = 988, normalized size = 14.1 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(d*x^4+c)^(1/2)/(b*x^4+a),x)

[Out]

1/4/b*((x^2-(-a*b)^(1/2)/b)^2*d+2*d*(-a*b)^(1/2)/b*(x^2-(-a*b)^(1/2)/b)-(a*d-b*c)/b)^(1/2)+1/4/b^2*d^(1/2)*(-a
*b)^(1/2)*ln((d*(-a*b)^(1/2)/b+(x^2-(-a*b)^(1/2)/b)*d)/d^(1/2)+((x^2-(-a*b)^(1/2)/b)^2*d+2*d*(-a*b)^(1/2)/b*(x
^2-(-a*b)^(1/2)/b)-(a*d-b*c)/b)^(1/2))+1/4/b^2/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b+2*d*(-a*b)^(1/2)/b*(x^2
-(-a*b)^(1/2)/b)+2*(-(a*d-b*c)/b)^(1/2)*((x^2-(-a*b)^(1/2)/b)^2*d+2*d*(-a*b)^(1/2)/b*(x^2-(-a*b)^(1/2)/b)-(a*d
-b*c)/b)^(1/2))/(x^2-(-a*b)^(1/2)/b))*a*d-1/4/b/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b+2*d*(-a*b)^(1/2)/b*(x^
2-(-a*b)^(1/2)/b)+2*(-(a*d-b*c)/b)^(1/2)*((x^2-(-a*b)^(1/2)/b)^2*d+2*d*(-a*b)^(1/2)/b*(x^2-(-a*b)^(1/2)/b)-(a*
d-b*c)/b)^(1/2))/(x^2-(-a*b)^(1/2)/b))*c+1/4/b*((x^2+(-a*b)^(1/2)/b)^2*d-2*d*(-a*b)^(1/2)/b*(x^2+(-a*b)^(1/2)/
b)-(a*d-b*c)/b)^(1/2)-1/4/b^2*d^(1/2)*(-a*b)^(1/2)*ln((-d*(-a*b)^(1/2)/b+(x^2+(-a*b)^(1/2)/b)*d)/d^(1/2)+((x^2
+(-a*b)^(1/2)/b)^2*d-2*d*(-a*b)^(1/2)/b*(x^2+(-a*b)^(1/2)/b)-(a*d-b*c)/b)^(1/2))+1/4/b^2/(-(a*d-b*c)/b)^(1/2)*
ln((-2*(a*d-b*c)/b-2*d*(-a*b)^(1/2)/b*(x^2+(-a*b)^(1/2)/b)+2*(-(a*d-b*c)/b)^(1/2)*((x^2+(-a*b)^(1/2)/b)^2*d-2*
d*(-a*b)^(1/2)/b*(x^2+(-a*b)^(1/2)/b)-(a*d-b*c)/b)^(1/2))/(x^2+(-a*b)^(1/2)/b))*a*d-1/4/b/(-(a*d-b*c)/b)^(1/2)
*ln((-2*(a*d-b*c)/b-2*d*(-a*b)^(1/2)/b*(x^2+(-a*b)^(1/2)/b)+2*(-(a*d-b*c)/b)^(1/2)*((x^2+(-a*b)^(1/2)/b)^2*d-2
*d*(-a*b)^(1/2)/b*(x^2+(-a*b)^(1/2)/b)-(a*d-b*c)/b)^(1/2))/(x^2+(-a*b)^(1/2)/b))*c

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(d*x^4+c)^(1/2)/(b*x^4+a),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.55901, size = 331, normalized size = 4.73 \begin{align*} \left [\frac{\sqrt{\frac{b c - a d}{b}} \log \left (\frac{b d x^{4} + 2 \, b c - a d - 2 \, \sqrt{d x^{4} + c} b \sqrt{\frac{b c - a d}{b}}}{b x^{4} + a}\right ) + 2 \, \sqrt{d x^{4} + c}}{4 \, b}, -\frac{\sqrt{-\frac{b c - a d}{b}} \arctan \left (-\frac{\sqrt{d x^{4} + c} b \sqrt{-\frac{b c - a d}{b}}}{b c - a d}\right ) - \sqrt{d x^{4} + c}}{2 \, b}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(d*x^4+c)^(1/2)/(b*x^4+a),x, algorithm="fricas")

[Out]

[1/4*(sqrt((b*c - a*d)/b)*log((b*d*x^4 + 2*b*c - a*d - 2*sqrt(d*x^4 + c)*b*sqrt((b*c - a*d)/b))/(b*x^4 + a)) +
 2*sqrt(d*x^4 + c))/b, -1/2*(sqrt(-(b*c - a*d)/b)*arctan(-sqrt(d*x^4 + c)*b*sqrt(-(b*c - a*d)/b)/(b*c - a*d))
- sqrt(d*x^4 + c))/b]

________________________________________________________________________________________

Sympy [A]  time = 7.51617, size = 65, normalized size = 0.93 \begin{align*} \frac{2 \left (\frac{d \sqrt{c + d x^{4}}}{4 b} - \frac{d \left (a d - b c\right ) \operatorname{atan}{\left (\frac{\sqrt{c + d x^{4}}}{\sqrt{\frac{a d - b c}{b}}} \right )}}{4 b^{2} \sqrt{\frac{a d - b c}{b}}}\right )}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(d*x**4+c)**(1/2)/(b*x**4+a),x)

[Out]

2*(d*sqrt(c + d*x**4)/(4*b) - d*(a*d - b*c)*atan(sqrt(c + d*x**4)/sqrt((a*d - b*c)/b))/(4*b**2*sqrt((a*d - b*c
)/b)))/d

________________________________________________________________________________________

Giac [A]  time = 1.1754, size = 89, normalized size = 1.27 \begin{align*} \frac{{\left (b c - a d\right )} \arctan \left (\frac{\sqrt{d x^{4} + c} b}{\sqrt{-b^{2} c + a b d}}\right )}{2 \, \sqrt{-b^{2} c + a b d} b} + \frac{\sqrt{d x^{4} + c}}{2 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(d*x^4+c)^(1/2)/(b*x^4+a),x, algorithm="giac")

[Out]

1/2*(b*c - a*d)*arctan(sqrt(d*x^4 + c)*b/sqrt(-b^2*c + a*b*d))/(sqrt(-b^2*c + a*b*d)*b) + 1/2*sqrt(d*x^4 + c)/
b